Согласование полярностей бинарной поcледовательности и последовательности Фибоначчи
Разгадка тайны - в полярном графике
Учебник математики для шестого класса
Маленький мальчик, за которым я присматривал, был в шестом классе, и он хотел разобраться в одной конкретной математической задаче. Это была сравнительно простая задача, но я не помнил, как это делается. Чтобы вспомнить и объяснить ему, как она решается, я просмотрел его учебник. Просматривая учебник, я увидел нужную мне геометрию - в учебнике для шестого класса! Автор учебника не понимал того, что видел я, потому что его мысли тогда двигались в совсем другом направлении. Но я увидел в этой математике что-то такое, что искал, и это был ключ, связывающий воедино эти две первоначальные последовательности.
Рис.8-21
Мне жаль, что я не помню ни названия книги, ни автора - это было давно - но там был показан полярный график и его отношение к спирали Золотого Сечения. Рис.8-21- это карта Южного полюса на полярнoм графике. Обратите внимание на крест, проходящий через центр, одна из линий следует оси х и другая следует оси у. В самом деле, эти линии пересекают каждый круг. Мы демонстрировали это, взяв плоский диск толщиной около половины дюйма, произвольно насыпая на него песок. Мы держали его за рукоятку, находящуюся под ним и ударяли по нему деревянным молоточком. Песок перераспределялся в совершенно квадратный крест, такой, как вы видите на этой иллюстрации. Если бы мы использовали звуковой генератор на диске, тогда песок перестраивался бы во множество других геометрических моделей. Но самой первой моделью, появляющейся при несильном ударе по круглому диску, будет идеальный квадратный крест.
Имея круг с квадратным крестом внутри него, возьмём радиус диска за эталон и назовём её единицей: 1 (что очень облегчает расчёты). Вычерчивание концентрических кругов на таком же расстоянии друг от друга наружу от этого первого радиуса даёт вам полярный график.